|
◆ jzeta()
double jzeta |
( |
double |
phi, |
|
|
double |
k |
|
) |
| |
Jacobi zeta function Z(φ, k)
- Purpose
- jzeta computes the Jacobi zeta function Z(φ, k).
Jacobi zeta function is defined by using elliptic integrals as follows. Z(φ, k) = E(φ, k) - E(k) * F(φ, k) / K(k)
The function is often defined as Z(φ, m) with m = k^2.
- Returns
- Jacobi zeta function Z(φ, k).
- Parameters
-
[in] | phi | Argument φ [rad]. |
[in] | k | Argument k. (|k| <= 1) |
- Error handling
- If |k| > 1, domain error (EDOM) occurs.
- Range error (ERANGE) may occur.
- Reference
- boost/math/special_functions
|