XLPack 7.0
XLPack Numerical Library (C API) Reference Manual
Loading...
Searching...
No Matches

◆ dtrsm()

void dtrsm ( char  side,
char  uplo,
char  transa,
char  diag,
int  m,
int  n,
double  alpha,
int  lda,
double  a[],
int  ldb,
double  b[] 
)

Solution of op(A)X = αB or Xop(A) = αB (op(A) = A or AT) (triangular matrices) (BLAS 3)

Purpose
This routine solves one of the matrix equations
op(A)*X = alpha*B or X*op(A) = alpha*B
where alpha is a scalar, X and B are m x n matrices, A is a unit or non-unit, upper or lower triangular matrix and op(A) is one of
op(A) = A or op(A) = A^T
The matrix X is overwritten on B.
Parameters
[in]sideSpecifies whether op(A) ap[lap]ears on the left or right of X as follows:
= 'L': op(A)*X = alpha*B.
= 'R': X*op(A) = alpha*B.
[in]uploSpecifies whether the matrix A is an upper or lower triangular matrix as follows:
= 'U': A is an upper triangular matrix.
= 'L': A is an lower triangular matrix.
[in]transaSpecifies the form of op(A) to be used in the matrix multiplication as follows:
= 'N': op(A) = A.
= 'T' or 'C': op(A) = A^T.
[in]diagSpecifies whether or not A is unit triangular as follows:
= 'N': A is not assumed to be unit triangular.
= 'U': A is assumed to be unit triangular. (Diagonal elements of a[][] are not referenced)
[in]mNumber of rows of the matrix B. (m >= 0) (If m = 0, returns without computation)
[in]nNumber of columns of the matrix B. (n >= 0) (If n = 0, returns without computation)
[in]alphaScalar alpha. When alpha is zero then a[][] is not referenced and B need not be set on entry.
[in]ldaLeading dimension of the two dimensional array a[][]. (lda >= max(1, m) when side = 'L', lda >= max(1, n) when side = 'R')
[in]a[][]Array a[la][lda] (la >= m when side = 'L', la >= n when side = 'R')
m x m triangular matrix A when side = 'L', or n x n triangular matrix A when side = 'R'.
According to uplo, only the upper or lower triangular part is to be referenced.
[in]ldbLeading dimension of the two dimensional array b[][]. (ldb >= max(1, m))
[in,out]b[][]Array b[lb][ldb] (lb >= n)
[in] m x n right-hand side matrix B.
[out] Overwritten by the m x n solution matrix X.
Reference
BLAS